

Tel: 08-556 29100 info@matronic.se matronic.se

Koki no-clean LEAD FREE solder paste

Multi-feature Lead-free Solder Paste S3X58-HF1200

Product Information

Maximizes Voiding & Wetting Performances
with
"Dual 2-Step" Enhancement Technology

Disclaimer

This Product Information contains product performance assessed strictly according to our own test procedures and is not the guaranteed result at end-users. Please conduct thorough process optimization before mass production application.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Feature

- Solder alloy composition : Sn3.0Ag0.5Cu
- Realizes low voiding with BTCs (e.g., Pw.Tr., QFN, LGA) and BGA
- Powerful wetting as good as Halogen containing solder paste
- Wide process window and enhanced flexibility of reflow profile design
- Exhibits excellent print quality response with >1hour stencil idle time
- Excellent stability of shape retention and contour of each printed paste deposit helps to reduce stencil cleaning frequency.
- Complies with Halogen Free standard (Cl+Br = 0ppm): BS EN14582
- No artificial addition of any halogen element Flux type: ROL0 (Cl+Br+l+F = < 0.05% / IPC J-STD-004C)
- RoHS, REACH compliant product

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Feature – Flux Gas Discharge Effect

The 2-step Flux Gas **Discharge Effect** The technology designed to reduce voids by rapidly discharging flux through the Active Coagulation Effect in the first step.

For the second step, the Extended Active Outflow Effect continues to discharge any remaining voids, realizing the lowest void performance ever achieved.

■ Step-1 Active Coagulation Effect

As solder powder melts, liquefied flux is designed to simultaneously enhance its coagulation and rapidly evacuate from the molten solder.

Starts to melt & **Active Coagulation** coagulate

Step-1

■ Step-2 Active Outflow Effect

After the Step-1 process, an 'Outflow' effect actively continues to discharge the liquefied flux and flux gas while the solder is in a molten state.

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Feature – Activation Boost Effect

The 2-step
Activation
Boost Effect

This begins with **Activation Stabilizer technology**, which prevents premature chemical reactions during storage and transportation by stabilizing the activator system's reactivity.

Upon exposure to reflow heating, the stabilizer is released, unlocking maximum activation power.

For the second step, the newly formulated high-temperature-resistant activator, with superior activation in high-temperature zones, ensures robust and powerful solder meltability and wetting, despite being halogen-free.

This breakthrough significantly enhances the flexibility of reflow profile design, providing a broad process window for a wide range of applications.

■ Step-1 Activation Stabilizer

The newly designed activator system inhibits the chemical reaction with solder during storage and even during the pre-heating stage and exerts maximum activation strength during the time above liquidus temperature.

■ Step-2 High Temperature Activator

High temp. resistant activator gets activated and protect solder particles and maximizes wetting performance.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Specification

Purpose		Printing	
Product Name		S3X58-HF1200	
Alloy	Alloy Composition (%)	Sn3.0Ag0.5Cu	
	Melting Point (°C)	217 - 219	
	Powder Shape	Spherical	
	Particle Size (µm)	20 - 38	
Flux	Halide Content (%)	0	
	Flux type*1	ROL0	
Solder Paste	Flux Content (%)	11.9 ±1.0	
	Viscosity *2 (Pa.s)	190 ±30	
	Copper Plate Corrosion*3	Passed	
	Tack Time	≥ 72 hours	
	Shelf Life (below 10°C)	6 months (provisional)	

*1. Flux Designation: In accordance with IPC J-STD-004B and 004C *2. Viscosity: Measured by Malcom viscometer at 10 rpm at 25°C.

*3. Copper Plate Corrosion: In accordance with IPC TM650-2.6.15

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Printability - Continuous printing

Test Condition

Printer: Model YVP-Xg YAMAHA Motor

Squeegee: Metal, 55° angle
Stencil: 0.12 mm thick, laser

• Print speed: 40 mm/sec

• Atmosphere: 24~26°C (40~60%RH)

• Pattern: 0.25 mm dia. CSP, 0.4 mm pitch QFP

Area ratio = Aperture area

Aperture wall area

Average of initial 10 prints

Average of 10 prints after 200 strokes

➤ Consistent print quality with good printed paste shape even with area ratio ≥0.52.

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Printability - Intermittent printing

Test Condition

• Printer: Model YVP-Xg YAMAHA Motor

Squeegee: Metal, 55° angle
Stencil: 0.12 mm thick, laser

• Print speed: 40 mm/sec

• Atmosphere: 24~26°C (40~60%RH)

• Pattern: 0.25 mm dia. CSP, 0.4 mm pitch QFP

Aperture area

CHALLENGING NEW TECHNOLOGIES

➤ Consistent paste transfer volume from the initial paste print even after 60 min. pause even with area ratio ≥0.52.

(mm)

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Printability – Stability in continuous printing

Test Condition

Printer: Model YVP-Xg YAMAHA Motor

Squeegee: Metal, 55° angle
Stencil: 0.12 mm thick, laser

• Print speed: 40 mm/sec

• Atmosphere: 24~26°C (40~60%RH)

• Pattern: 0.4 mm pitch QFP (0.25mm width 0.15mm gap)

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Viscosity stability - During continual paste printing

Test condition

Print (knead) solder paste on the sealed-up stencil continually for 24 hours to observe viscosity variation.

• Squeegee: Metal blades

• Squeegee angle: 55°

Squeegee speed: 20 mm/sec.Print stroke: 300 mm

• Printing environment: 24~26 °C, 40~60%RH

> Activator stability technology ensures minimal variation of rheology (viscosity & thixotropy) in continual printing.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Meltability – Fine pattern

Test condition

• Material: Glass epoxy FR-4

Surface finish: OSP, ImSn, ImAg, ENIG
0603chip: 100% Sn plated

• Stencil thickness: 0.12 mm (laser cut)

• Pad size: 0.25 mm dia.,

0.23 mm dia., 0603 metric chip pattern

• Stencil aperture: 100% aperture opening to pad

Heat source: Hot air convection

• Atmosphere: Air

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Meltability – Fine pattern

Test condition

• Material: Glass epoxy FR-4

• Surface finish: OSP, ImSn, ImAg, ENIG

• 0603chip: 100% Sn plated

• Stencil thickness: 0.12 mm (laser cut)

• Pad size: 0.25 mm dia.,

0603 metric chip pattern

• Stencil aperture: 100% aperture opening to pad

Heat source: Hot air convection

• Atmosphere: Air

> Regardless of the type of surface finish, the solder coalesced completely and caused no unmolten solder particles.

CHALLENGING NEW TECHNOLOGIES

S3X58-HF1200

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Meltability - High temp. reflow profile resistance

Test condition

• Material: Glass epoxy FR-4

Surface finish: OSP

• Components: 0603R 100% Sn plated

0.5mm pitch QFP Ni-Pd plated

• Stencil thickness: 0.12 mm (laser cut)

• Stencil aperture: 100% aperture opening to pad

• Heat source: Hot air convection

• Atmosphere: Air

➤ Despite the high temperature profile, S3X58-HF1200 exhibited excellent wetting and caused no unmolten solder particles.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Meltability – Solder dewetting test

Test condition

• Material: Cu, Ni, Oxidized Cu*1, C7521*2, Ni/Al

Stencil thickness:
 Heat source:
 0.2 mm (laser cut)
 Hot air convection

• Atmosphere: Air

*1 Oxidization condition-1: 150°C x 40 hrs

*1 Oxidization condition-2: 85°C85RH% x 168 hrs

*3 C7521: Nickel Silver(64Cu-18Ni-18Zn)

➤ Newly developed powerful activator technology provided excellent solder spreading not only on standard substrates, but also difficult to solder oxidized Cu, C7521 & oxidized ImSn.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Voiding

Test condition

Glass epoxy FR-4 Material: Surface finish: OSP, ImSn, ImAg, ENIG

0.12 mm (laser cut) Stencil thickness:

100% aperture opening to pad Stencil aperture:

Component: 100% Sn plated – PwTr, QFN x n15

SAC305 - BGA x n132

· Heat source: Hot air convection

 Atmosphere: Air

 Reflow profile: See "Meltability - Fine pattern"

ImSn

BGA

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Flux splattering

Test condition

Material: Phosphorous deoxidized copper (C1220)
Stencil: 0.2 mm thickness, 6.5 mm diameter

• No. of specimens: n=5

• Reflow profile: See "Meltability - Fine pattern"

CHALLENGING NEW TECHNOLOGIES

Reflow:

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Electrical reliability - Electro-chemical migration (ECM)

Test condition

• Test standard: IPC TM-650 2.6.14.1

• Test coupon: IPC-B-25

• Surface finish: OSP

• Chamber condition: 65°C / 88.5%RH

Voltage: Applied 10 V / measurement 100 V

Hot air convection in air atmosphere

$$IR_{avg} = 10^{\left[\frac{1}{N}\sum_{i}^{N}\log |R_{i}|\right]}$$

N = number of test points (10 minimum),

IR_i = individual insulation resistance measurements

Coupon	IR _{avg} (Ω)
Bare Copper (Control) 1	3.97E+11
Bare Copper (Control) 2	3.44E+11
S3X58-HF1200 1	1.05E+11
S3X58-HF1200 2	1.12E+11

➤ S3X58-HF1200 resulted with high insulation resistance.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Halogen content

Measurement Method

Ion Chromatography, Quartz combustion tube

Elements	Results	
F	Not detected*	
CI	Not detected	
Br	Not detected	
1	Not detected	

*Not detected: Detection limit <50ppm

➤ **S3X58-HF1200** has no addition of any of the halogens and is classified as ROL0 (Cl+Br+l+F = <500ppm according to IPC J-STD-004B and 004C).

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

General properties

ltem	Result	Test Method
Slump properties	0.3 mm pass	JIS Z 3284-3 150°C for 10 min.
Solder ball test	Category 3	JIS Z 3284-4
Tack time	≥ 72 hours	JIS Z 3284-3
Cu mirror test	Type L	IPC-TM-650 2.3.32
Cu plate corrosion test	No corrosion	IPC-TM-650 2.6.15
Insulation resistance test	≥ 1E+11 Ω	IPC-TM-650 2.6.3.7
Electrochemical migration test	No evidence of migration	IPC-TM-650 2.6.14.1

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Handling guide – Recommended print condition

Recommended print condition

1) Squeegee condition

1. Shape Flat

2. Material Metal or Urethane blade

3. Angle 50-60°

4. Print pressure Relatively low (40-60 N)

5. Squeegee speed 20 - 80 mm/sec.

2) Stencil

1. Thickness 0.15-0.10 mm for 0.65-0.4 mm pitch pads

Fabrication method Laser or chemical etch
 Stencil release speed 7.0-10.0 mm/sec.

4. Snap-off speed 0 mm

3) Ambient condition

1.Temperature 23-26°C 2. Humidity 40-60%RH

3. Air conditioning Direct air blowing on the stencil will dry the solder paste faster. Adjust the direction of

air blowing on the stencil using a shield, etc.

4) Notes

1. Stencil thickness The maximum recommended stencil thickness is 0.2 mm.

A thicker stencil than this may induce the occurrence of solder balling around the

solder fillet.

2. Pin-in-Paste Flux residue may accumulate on the tip of connector pins. It is not recommended to

strike the ICT probe at the tip of the connector pins.

Caution: When handling solder paste, personal protective measures as advised by your Health and Safety department should always be adhered to.

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Handling guide – Pot life & Shelf life

1. Pot life

- 1) Once paste has returned to ambient temperature it is fit for use.
- 2) Once the solder paste is opened, but not kneaded by a spatula nor a mixing machine
 - → Within the remaining shelf life of the product by storing it back in the refrigerator at 0-10°C.
- 3) Once the solder paste is opened and kneaded by a spatula or a mixing machine
 - → Within 1 week to 1 month by storing it back in the refrigerator at 0-10°C
- 4) Once the solder paste is opened, kneaded by a spatula and worked on the stencil with the squeegee blades.
 - → Within 24 hours

*NOTE: What is described in this guide does not necessarily mean a guarantee of the performance/quality of the solder paste.

2. Shelf life (at 0 ~ 10°C)

Storage temperature	Package	Shelf life	
0 1000	Jar	6 months from manufacturing date	
0 ~ 10°C	Cartridges	6 months from manufacturing date	

Attention: "Storage temperature" is applicable upon receipt by a customer – label information on product also relates to storage conditions of product upon receipt by a customer.

* How to interpret the lot number: e.g. L

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Handling guide - Recommended reflow profile

Tel: 08-556 29100 info@matronic.se matronic.se

Contents

Feature

Specification

Printability

Viscosity stability

Meltability

Voiding

Flux splattering

Electrical reliability

Halogen content

General properties

Handling guide

Handling guide - Supplemental information

